Haier SERVICE MANUAL

Outdoor unit

DC Inverter

Model No.1U25MECFRA-3

\. WARNING

This service information is designed for experienced repair technicians only and is not designed for use by the general public. It does not contain warnings or cautions to advise non-technical individuals of potential dangers in attempting to service a product. Products powered by electricity should be serviced or repaired only by experienced professional technicians. Any attempt to service or Repair the product or products dealt with in this service information by anyone else could result in serious injury or death

Contents

1. Introduction 1
2. Specifications 7
3. Sensors list 8
4. Piping diagrams 9
5. Operation range 10
6. Printed circuit board connector wiring diagram 12
7. Functions and control 15
8. Dimensional drawings 29
9. Center of gravity 29
10. Service diagnosis 30
11. Performance and curves diagrams 48
12. Circuit diagrams 56

1. Introduction

1.1 Model name explanation

1.2 Safety Cautions

Be sure to read the following safety cautions before conducting repair work.
The caution items are classified into "Warning" and "Caution". The "Warning" items are especially important since they can lead to death or serious injury if they are not followed closely. The "Caution" items can also lead
to serious accidents under some conditions if they are not followed. Therefore, be sure to observe all the safety
caution items described below.
About the pictograms
\triangle This symbol indicates an item for which caution must be exercised.
The pictogram shows the item to which attention must be paid.

- This symbol indicates a prohibited action.

The prohibited item or action is shown inside or near the symbol.

- This symbol indicates an action that must be taken, or an instruction.

The instruction is shown inside or near the symbol.
After the repair work is complete, be sure to conduct a test operation to ensure that the equipment operates Normally, and explain the cautions for operating the product to the customer.

1.2.1 Caution in Repair

Warning
Be sure to disconnect the power cable plug from the plug socket before disassembling the equipment for
a repair.
Working on the equipment that is connected to a power supply can cause an electrical shook.
If it is necessary to supply power to the equipment to conduct the repair or inspecting the circuits, do not
touch any electrically charged sections of the equipment.
If the refrigerant gas discharges during the repair work, do not touch the discharging refrigerant gas .The
refrigerant gas can cause frostbite.
When disconnecting the suction or discharge pipe of the compressor at the welded section, release the
refrigerant gas completely at a well-ventilated place first.
If there is a gas remaining inside the compressor, the refrigerant gas or cooling machine oil discharges
when the pipe is disconnected, and it can cause injury.
If the refrigerant gas leaks during the repair work, ventilate the area. The refrigerant gas can generate
toxic gases when it contacts flames.
The step-up capacitor supplies high-voltage electricity to the electrical components of the outdoor unit. Be sure to discharge the capacitor completely before conducting repair work. A charged capacitor can cause an electrical shock. Do not start or stop the air conditioner operation by plugging or unplugging the power cable plug. Plugging or unplugging the power cable plug to operate the equipment can cause an electrical shock or fire.

Warning
Do not repair the electrical components with wet hands. Working on the equipment with wet hands can
cause an electrical shock
Do not clean the air conditioner by splashing water. Washing the unit with water can cause an electrical
shock.
Be sure to provide the grounding when repairing the equipment in a humid or wet place, to avoid electrical shock. Be sure to turn off the power switch and unplug the power cable when cleaning the equipment. The internal fan rotates at a high speed, and cause injury. Do not tilt the unit when removing it. The water inside the unit can spill and wet the furniture and floor. Be sure to check that the cooling cycle section has cooled down sufficiently before conducting repair work. Working on the unit when the cooling cycle section is hot can cause burns. Use the welder in a well-ventilated place. Using the welder in an enclosed room can cause oxygen deficiency.

1.2.2 Cautions Regarding Products after Repair

Warning	
Be sure to use parts listed in the service parts list of the applicable model and appropriate tools to conduct repair work. Never attempt to modify the equipment. The use of inappropriate parts or tools can cause an electrical shock, excessive heat generation or fire.	
When relocating the equipment, make sure that the new installation site has sufficient strength to withstand the weight of the equipment. If the installation site does not have sufficient strength and if the installation work is not conducted securely, the equipment can fall and cause injury.	
Be sure to install the product correctly by using the provided standard installation frame. Incorrect use of the installation frame and improper installation can cause the equipment to fall, resulting in injury.	For integral units only
Be sure to install the product securely in the installation frame mounted on a window frame. If the unit is not securely mounted, it can fall and cause injury.	For integral units only

Warning	
Be sure to use an exclusive power circuit for the equipment, and follow the technical standards related to the electrical equipment, the internal wiring regulations and the instruction manual for installation when conducting electrical work. Insufficient power circuit capacity and improper electrical work can cause an electrical shock or fire.	
Be sure to use the specified cable to connect between the indoor and outdoor units. Make the connections securely and route the cable properly so that there is no force pulling the cable at the connection terminals. Improper connections can cause excessive heat generation or fire.	
When connecting the cable between the indoor and outdoor units, make sure that the terminal cover does not lift off or dismount because of the cable. If the cover is not mounted properly, the terminal connection section can cause an electrical shock, excessive heat generation or fire.	
Do not damage or modify the power cable. Damaged or modified power cable can cause an electrical shock or fire. Placing heavy items on the power cable, and heating or pulling the power cable can damage the cable.	
Do not mix air or gas other than the specified refrigerant (R-410A / R22) in the refrigerant system.	
If air enters the cooling system, an excessively high pressure results, causing equipment damage	
and injury.	
If the refrigerant gas leaks, be sure to locate the leak and repair it before charging the refrigerant. After charging refrigerant, make sure that there is no refrigerant leak. If the leak cannot be located and the repair work must be stopped, be sure to perform pump-down and close the service valve, to prevent the refrigerant gas from leaking into the room. The refrigerant gas itself is harmless, but it can generate toxic gases when it contacts flames, such as fan and other heaters, stoves and ranges.	
When replacing the coin battery in the remote controller, be sure to disposed of the old battery to prevent children from swallowing it. If a child swallows the coin battery, see a doctor immediately.	

Caution	
Installation of a leakage breaker is necessary in some cases depending on the conditions of the installation site, to prevent electrical shocks.	
Do not install the equipment in a place where there is a possibility of combustible gas leaks. If a combustible gas leaks and remains around the unit, it can cause a fire.	
Be sure to install the packing and seal on the installation frame properly. If the packing and seal are not installed properly, water can enter the room and wet the furniture and floor.	

1.2.3 Inspection after Repair

| Warning |
| :--- | :--- |
| Check to make sure that the power cable plug is not dirty or loose, then insert the plug into a power outlet
 all the way.
 If the plug has dust or loose connection, it can cause an electrical shock or fire. |
| If the power cable and lead wires have scratches or deteriorated, be sure to replace them.
 Damaged cable and wires can cause an electrical shock, excessive heat generation or fire. |

Warning

Do not use a joined power cable or extension cable, or share the same power outlet with other electrical appliances since it can cause an electrical shock, excessive heat generation or fire.

Caution	
Check to see if the parts and wires are mounted and connected properly, and if the connections at the soldered or crimped terminals are secure. Improper installation and connections can cause excessive heat generation, fire or an electrical shock.	
If the installation platform or frame has corroded, replace it. Corroded installation platform or frame can cause the unit to fall, resulting in injury.	
Check the grounding, and repair it if the equipment is not properly grounded. Improper grounding can cause an electrical shock.	
Be sure to measure the insulation resistance after the repair, and make sure that the resistance is 1 M ohm or higher. Faulty insulation can cause an electrical shock.	
Be sure to check the drainage of the indoor unit after the repair. Faulty drainage can cause the water to enter the room and wet the furniture and floor.	

1.2.4 Using Icons

Icons are used to attract the attention of the reader to specific information. The meaning of each icon is described in the table below:

1.2.5 Using Icons List

Icon	Type of Information	Description
Note	Note	A "note" provides information that is not indispensable, but may nevertheless be valuable to the reader, such as tips and tricks.
Caution	Caution	A "caution" is used when there is danger that the reader, through incorrect manipulation, may damage equipment, loose data, get an unexpected result or has to restart (part of) a procedure.
Warning	Warning	A "warning" is used when there is danger of personal injury.
	Reference	A "reference" guides the reader to other places in this binder or in this manual, where he/she will find additional information on a specific topic.

1.2.6 Embedded wire checking before installation

Check the embedded wire diameter suitable to request:
(Power supply from indoor: $2.5 \mathrm{kw} \geq 1.0 \mathrm{~mm}^{2} 3.5 \mathrm{kw}, 5 \mathrm{kw} \geq 1.5 \mathrm{~mm}^{2} 7 \mathrm{kw} \geq 2.5 \mathrm{~mm}^{2}$; Power supply from outdoor $\geq 1.0 \mathrm{~mm}^{2}$)

Check the embedded wire are four roots, L/N/COM/GND; GND is needed, if not, thunder or high voltage wave from power grid will impact to the performance

Using a multi-meter to test short circuit of the four roots wires, make sure no short circuit happen.

2 Specifications

NOMINAL DISTRIBUTION SYSTEM VOLTAGE			
Phase	$/$	1	
Frequency	Hz	50	
Voltage	V	$220-240$	

NOMINAL CAPACITY and NOMINAL INPUT			
		cooling	heating
Capacity rated	KW	2.6(1.0-4.0)	3.2(1.1-5.4)
	Btu/h	8870(3410-13650)	10920(3750-18420)
Power Consumption(Rated)	KW	0.57	0.66
SEER/SCOP	W/W	8.75	5.1
Annual energy consumption	KWh	104	714
Moisture Removal	$\mathrm{m}^{3} / \mathrm{h}$	$1.2{ }^{*} 10^{-3}$	

TECHNICAL SPECIFICATIONS-UNIT			
Dimensions	$\mathrm{H}^{*} \mathrm{~W}^{*} \mathrm{D}$	mm	$800 \times 275 \times 553$
Packaged Dimensions	$\mathrm{H}^{*} \mathrm{~W}^{*} \mathrm{D}$	mm	$954 \times 409 \times 625$
Weight	$/$	KG	29.8
Gross weight	$/$	KG	33.6
Sound level	Sound pr essure	dB	48
	Sound power	dB	61

ELECTRICAL SPECIFICATIONS			
Nominal running current	A	cooling	heating
Maximum running current	A	2.5	3.02
Starting current	A	5.4	8.0

TECHNICAL SPECIFICATIONS-PARTS				
			cooling	heating
Compressor	Type		Rotary Compressor	
	Model		9RS102ZBC23	
	Motor output	W	700	
	Oil type		FV50S or equivalent	
	Oil charge volume	L	0.32	
Fan	Type		Axial fan	
	Motor output	W	40	
	Air flow rate(high)	$\mathrm{m}^{3} / \mathrm{h}$	2000	
	Speed(high/low)	rpm	800/300	
Heat exchanger	Type		ML fin- Φ 7 $\mathrm{HI}-\mathrm{HX}$ tube	
	Row*stage*fitch		1*12*1.35	

TECHNICAL SPECIFICATIONS-OTHERS				
Refrigerant circuit	Refrigeranttype			R32
	Refrigerant charge		KG	0.74
	Maximum allowable distance between indoor an outdoor		m	20
	Maximum allowable level difference		m	10
	Refrigerant control		EEV	
Piping connections (external diameter)		liquid	mm	Ф6.35
		gas	mm	Ф9.52
		drain	mm	Ф16
Heatinsulation type			Both liquid and Gas pipes	
Max. piping Length			m	20
Max. vertical Difference			m	10
Chargeless			m	7
Amount of Additional Charge of Refrigerant			g / m	20
Intemational Protection degree			IP X4	

Note: the data are based on the conditions shown in the table below

cooling	heating	Piping length
Indoor: $27^{\circ} \mathrm{CDB} / 19^{\circ} \mathrm{CWB}$	Indoor: $20^{\circ} \mathrm{CDB}$	5 m
Outdoor: $35^{\circ} \mathrm{CDB} / 24^{\circ} \mathrm{CWB}$	Outdoor: $7^{\circ} \mathrm{CDB} / 6^{\circ} \mathrm{CWB}$	

Conversation formulae
Kcal/h=KW×860
Btu/h=KW $\times 3414$
$\mathrm{cfm}=\mathrm{m}^{3} / \mathrm{min} \times 35.3$

3. Sensors list

type		Description
Qty		
Ambient sensor	Its used for detecting temperature of outdoor side	1
Defrosting sensor	Its used for controlling outdoor defrosting at heating mode	
Di scharging sensor	Its used for compressor in case of over-heat	

4. Piping diagrams

Cooling mode

Heating mode

5. Operation range

The name of parts Cooling

Notes:
The graphs are based on the following condition:
Equivalent piping length
5 m
Level difference
Om
Air flow rate
high

5.Operation range

The name of parts

Notes:

The graphs are based on the following condition:
Equivalent piping length
5 m
Level difference
0 m
Air flow rate
high

6. Printed circuit board connector wiring diagram

Connectors

PCB (Control PCB) For 1U09MEJFRA/1U12MEJFRA

1) CN1, CN2 Connector for power N and L
2) CN3 Connector for ground
3) CN22 Connector for DC POWER 15 V and 5 V to the module board
4) CN8, CN9 Connector for CN2,CN1 on the module board
5) CN21 Connector for fan motor
6) CN10 Connector for four way valve coil
7) CN18,CN20 Connector for thermistors
8) CN23 Connector for communicate between the control board and the module board
9) CN25, CN27 Connector to N and P of the module board
10) CN4 Connector for communicate between indoor and outdoor unit
11) CN16 Connector for electric expansion valves

Notes: Other Designations
PCB (Control PCB)

1) FUSE 1, (25A, 250VAC);
2) LED 1 Keep light representative normal, if keep flash interval representative trouble Alarm
3) RV1, RV2, RV3 Varistor

PCB

Wiring diagrams

7. Functions and control

7.1 Main functions and control specification

7.1.1 The operation frequency of outdoor unit and its control

7.1.1.1 The operation frequency control of compressor

The operation frequency scope of compressor:

Mode	Minimum operation frequency	Maximum operation frequency
Heating	$24 \mathrm{~Hz} / 20 \mathrm{~Hz}$	$103 \mathrm{~Hz} / 100 \mathrm{~Hz}$
Refrigeration	$20 \mathrm{~Hz} / 20 \mathrm{~Hz}$	$85 \mathrm{~Hz} / 85 \mathrm{~Hz}$

7.1.1.2 The starting of compressor

When the compressor is started for the first time, it must be kept under the conditions of $38 \mathrm{~Hz}, 58 \mathrm{~Hz}, 88 \mathrm{~Hz}$ for 30 second, one minute, one minute (the overheating protection of the outdoor unit air-blowing temperature, immediately decrease the frequency when the compressor is overflowing and releasing the pressure), then it can be operated towards the target frequency. When the machine runs normally, there's no such process. After starting the compressor for operation, the compressor should run according to the calculated frequency, and every determined frequency for protection should be prior to the calculated frequency.

7.1.1.3 The speeds of increasing or decreasing the frequency of the compressor The speed of increasing or decreasing the frequency rapidly $1---------1 \mathrm{HZ} /$ second The speed of increasing or decreasing the frequency slowly 2 -----------1HZ/10seconds

7.1.1.4 The calculation of the compressor's frequency

Refrigeration/dehumidification mode:

$$
\begin{aligned}
& \text { Pn }=(\text { Nh_c- S_c })^{*} 10 \geqslant 50 \quad \text { outdoor environment control } \\
& \text { Pn }=(\text { Nh_c- S_c) } * 10<50 \quad \text { PID control }
\end{aligned}
$$

Heating mode:

$$
\begin{array}{ll}
\mathrm{Pn}=\left(\mathrm{S} _c-\mathrm{Nh} _ \text {c) }\right) & 10 \geqslant 60 \\
\mathrm{Pn}=\left(\mathrm{S} _c-\mathrm{Nh} _ \text {c) }\right) & \text { outdoor environment control } \\
\end{array}
$$

(Nh_c=indoor environment temperature S_c=setting temperature)

1) The minimum/maximum frequency limitation
A. While refrigerating: F-MAX-r is the maximum operation frequency of the compressor; F-MIN-r is the minimum operation frequency of the compressor.
B. While heating: F-MAX-d is the maximum operation frequency of the compressor; F-MIN-d is the minimum operation frequency of the compressor.
2) The frequency limitation which is affected by the environment temperature.
(Wh_c= environment temperature)
Heating mode:

Serial No.	Temperature scope	Frequency limitation
1	Wh_c<-12	Max_hz1 103HZ/87 HZ
2	Wh_c<-8	Max_hz2 103HZ/87 HZ

Functions and control

3	Wh_c<-2	Max_hz3	$103 \mathrm{HZ} / 87 \mathrm{HZ}$
4	Wh_c <5	Max_hz4	$90 \mathrm{HZ} / 76 \mathrm{HZ}$
5	Wh_c<10	Max_hz5	$78 \mathrm{HZ} / 67 \mathrm{HZ}$
6	Wh_c<17	Max_hz6	$67 \mathrm{HZ} / 62 \mathrm{HZ}$
7	Wh_c <20	Max_hz7	$56 \mathrm{HZ} / 44 \mathrm{HZ}$
8	Wh_c>=20	Max_hz8	$52 \mathrm{HZ} / 39 \mathrm{HZ}$

Remarks: The above are the maximum frequency limitations of the complete appliance which are affected by the environment, and they have nothing to do with the ability of the indoor unit.

Refrigeration/dehumidification mode:

Serial No.	Temperature scope	Frequency limitation	
1	Wh_c <16	Max_hz1 $\quad 33 \mathrm{HZ} / 30 \mathrm{HZ}$	
2	Wh_c <22	Max_hz2	$43 \mathrm{HZ} / 35 \mathrm{HZ}$
3	Wh_c <29	Max_hz3	$55 \mathrm{HZ} / 51 \mathrm{HZ}$
4	Wh_c <32	Max_hz4	$63 \mathrm{HZ} / 62 \mathrm{HZ}$
5	Wh_c <40	Max_hz5	$75 \mathrm{HZ} / 75 \mathrm{HZ}$
6	Wh_c <48	Max_hz6	$63 \mathrm{HZ} / 66 \mathrm{HZ}$
7	Wh_c>=48	Max_hz7	$53 \mathrm{HZ} / 49 \mathrm{HZ}$

Remarks: the above are not only the maximum frequency limitations of the complete appliance which are affected by the environment, but also the maximum ability limitation of the system. When the starting ability is not the maximum, its maximum frequency limitation is calculated by the following equations:

The frequency limitation which is affected by the temperature and under the condition of actual ability $=$ the actual running system ability*the maximum frequency which is limited by the temperature and under the condition of maximum ability/the maximum designing ability of the system

Refrigeration/dehumidification mode:

The indoor setting airflow speed	Low	Medium	Quiet
The percentage of the rated frequency K	$70 \% / 700 \%$	$85 \% / 85 \%$	$42 \% / 60 \%$

Heating mode:

The indoor setting airflow speed	Low	Medium	Quiet
The percentage of the rated frequency K	$80 \% / 80 \%$	$90 \% / 90 \%$	$51 \% / 60 \%$

The calculation of the actual output frequency:
F=F-ED-*(rated frequency) $\times \mathrm{K}$
F-ED-*(rated frequency)= The frequency which is limited by the outdoor environment temperature Notes:

When refrigerating, it is needed to satisfy
F-MIN-d(compressor's Min_hz)< F<F-MAX-d(compressor's Max_hz)
When heating, it is needed to satisfy
F-MIN-r (compressor's Min_hz)< F<F-MAX-r (compressor's Max_hz)
PID control :
The innital frequency Sn is determined by Pn . We can calculate Hzoutf according to the value of $\mathrm{Kp}, \mathrm{Ki}, \mathrm{Kd}$, Out_gain, Pn . Then , $\mathrm{Fn}=\mathrm{Sn}+$ Hzoutf. The value of Fn is calculated in each sample time (60 seconds), and Fn is adujusted according to previous frequency of Sn and filtered output of Hzoutf.

7.1.2 The outdoor fan control (Exchange fan)

When the fan is changed among every airflow speed (including stop blowing), in order to avoid the airflow speed from skipping frequently, it must be kept under each mode for over 30 seconds, and then it can be changed to another mode (when refrigerating, the time is changed to 15 seconds).

7.1.2.1 The outdoor fan control

Within three minutes of compressor starting, the compressor is controled according to the ambient temperature.

Tao $\left({ }^{\circ} \mathrm{C}\right)$	Tao $<22^{\circ} \mathrm{C}$	$22^{\circ} \mathrm{C}<\mathrm{Tao}<28^{\circ} \mathrm{C}$	Tao $\geqslant 29^{\circ} \mathrm{C}$
Refrigeration/dehumidification	2nd level $/ 2$ nd level	3rd level $/ 4$ th level	5th level $/ 6$ th level
Tao $\left({ }^{\circ} \mathrm{C}\right)$	Tao $\ll 10^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}<\mathrm{Tao}<17^{\circ} \mathrm{C}$	Tao $\geqslant 17^{\circ} \mathrm{C}$
Heating	5th level $/ 6$ th level	3 th level $/ 5$ th level	3 rd level $/ 2 \mathrm{nd}$ level

After 3 minutes, the compressor is controled according to the ambient temperature and the frequency of the compressor.

Refrigeration/dehumidification frequency (Hz)	$<40 \mathrm{~Hz}$	$40 \mathrm{~Hz}-60 \mathrm{~Hz}$	$\geqslant 60 \mathrm{~Hz}$		
	$\leqslant 22$	2nd level	3rd level	5 th level(6 th)	
	$22-28$	3rd level	5 th level	7 th level(6 th)	
	$\geqslant 28$	7 th level			

Heating frequency (Hz)		$<51 \mathrm{~Hz}$	$51-70 \mathrm{~Hz}$	$\geqslant 70 \mathrm{~Hz}$
Tao ($\left.{ }^{\circ} \mathrm{C}\right)$	$\leqslant 10$	5 nd level(3rd)	6 rd level	7 th level
	$10-17$	3 rd level(2nd)	4 th level	5 th level(6 th)

7.1.3 The control of the outdoor Electronic expansion valve (EEV)

In cooling mode, the EEV opening range is $90 \sim 480$ steps. The EEV opening is 90 steps when unit is off.
In heating mode, the EEV opening range is $60 \sim 480$ steps. The EEV opening is 60 steps when unit is off.
After outdoor unit is off, the EEV opening keep the current on for 5 s , then open the EEV completely for 2 minutes, then become 90 steps (cooling) or 60 steps (heating).

The EEV opening will increase if SH (superheat degree) >0 while decrease if $\mathrm{SH}<0$.
Adjust frequency:
If $|S H|=0,60$ s/ 1 step
If $|\mathrm{SH}| \geqslant 3$, and $\triangle \mathrm{SH}=0,10$ s/ 1 step.
If $3 \geqslant|S H| \geqslant 0,30 \mathrm{~s} / 1$ step.
$\triangle S H=$ current SH - last SH
SH= Ts (suction temp)-Tc1 (indoor coil temp)-Tsh (fixed data, depend on different models, -1~2)

7.1.4 Four way control

For the details of defrosting four-way valve control, see the defrosting process.
Four way working in other ways:
Under the mode of heating, open the four-way valve, when the compressor is not started or changed to non-heating mode, make sure the compressor is stoped for 2 minutes, and then close the four-way valve.

7.1.5 Protection function

7.1.5.1 TTC high temperature-preventing protection

Once the machine is started, it can run TTC(air-blowing temp) overheating protection of air-blowing, but air-blowing sensor malfunction must alarm after 4 minutes during which the compressor is started (during the course of self-detection, there's no such limitation)

Sensor detection methods: 100 times (one cycle of procedure run is one time, and about 5 ms , detection method for each time: continuously sampling for 8 times, then order them and take the mean value of the middle 2 values), take the mean value.

TTC $>=110^{\circ} \mathrm{C}$ lasts for 20 seconds. Overheating protection of air-blowing, alarm malfunction to the indoor, others don't last.
7.1.5.2 TC high temperature-preventing control of the indoor heating unit:

Tpg_indoor is the highest value of the effective indoor unit (start it and it is in accord with the running state). TC=indoor coil temp.

The indoor heat exchanger sensor tests the temperature of the indoor heat exchanger. If the temperature is higher than $63^{\circ} \mathrm{C}$, decrease the rotate speed of the compressor and do the high temperature-preventing protection of the indoor heat exchanger; if the temperature of the indoor heat exchanger is lower than $45^{\circ} \mathrm{C}$, recover to the normal control.

Fgh_t $163^{\circ} \mathrm{C} / 63^{\circ} \mathrm{C}$

Fgh_t2 $59^{\circ} \mathrm{C} / 59^{\circ} \mathrm{C}$ Fgh_t3 $56^{\circ} \mathrm{C} / 57^{\circ} \mathrm{C}$

Fgh_t4 $53^{\circ} \mathrm{C} / 51^{\circ} \mathrm{C}$ Fgh_t5 $40^{\circ} \mathrm{C} / 40{ }^{\circ} \mathrm{C}$
N : Decreasing at the speed of $1 \mathrm{HZ} / 1$ second
P: Decreasing at the speed of $1 \mathrm{~Hz} / 10$ seconds
Q: Continue to keep the last-time instruction cycle
R: Increasing at the speed of $1 \mathrm{~Hz} / 10$ seconds
Remarks: the outdoor unit

7.1.5.3 The control of preventing the over current of the compressor:

- During the starting process of the compressor, if the current of the compressor is greater than 15.5A /17A for 3 seconds, stop the compressor and alarm, after 3 minutes, start it again, if such state appears 3 times in 20 minutes, stop the compressor and alarm, and confirm the malfunction. Then continue to run it only after the power is off.
- During the starting process of the compressor, if the AC current is greater than 14.5A/15A, the frequency of the compressor decreases at the speed of $1 \mathrm{HZ} /$ second.
-During the starting process of the compressor, if the AC current is greater than $13.5 \mathrm{~A} / 14 \mathrm{~A}$, the frequency of the compressor decreases at the speed of $0.1 \mathrm{HZ} /$ second.
- During the starting process of the compressor, if the AC current is greater than 13A/13A, the frequency of the compressor increases at the prohibited speed.
- During the starting process of the compressor, if the AC current is greater than $11.5 \mathrm{~A} / 12 \mathrm{~A}$ the frequency of the compressor increases at the speed of no faster than $0.1 \mathrm{HZ} /$ second.

7.1.5.4 The protection function of $A C$ current:

During the starting process of the compressor, if the AC current is greater than 15.5A/17.5A for 3 seconds, stop the compressor and alarm, after 3 minutes, start it again, if such state appears 3 times in 20 minutes, stop the compressor and alarm, and confirm the malfunction. Then continue to run it only after the the power is off.
During the starting process of the compressor, if the AC current is greater than 14.5A 15A, the frequency of the compressor decreases at the speed of $1 \mathrm{HZ} /$ second.

During the starting process of the compressor, if the AC current is greater than 13.5/14A, the frequency of the compressor decreases at the speed of $0.1 \mathrm{HZ} /$ second.
During the starting process of the compressor, if the AC current is greater than $13 \mathrm{~A} / 13 \mathrm{~A}$, the frequency of the compressor increases at the prohibited speed.
During the starting process of the compressor, if the AC current is greater than $11.5 \mathrm{~A} / 12 \mathrm{~A}$, the frequency of the compressor increases at the speed of no faster than $0.1 \mathrm{HZ} /$ second.
Remarks: when the outdoor temperature is high, there's compensation for AC current protection.
(1) When the outdoor environment temperature is higher than $40^{\circ} \mathrm{C}, \mathrm{AC}$ current protection value decreases by $2.5 \mathrm{~A} / 1 \mathrm{~A}$.
(2) When the outdoor environment temperature is higher than $50^{\circ} \mathrm{C}, \mathrm{AC}$ current protection value decreases by $3.5 \mathrm{~A} / 2 \mathrm{~A}$.

7.1.5.5 Anti-freezing protection of the indoor heat exchanger

When refrigerating/heating, prevent freezing.
Tpg_indoor is the minimum value of the effective indoor unit (start it and it is in accord with the running state).

When Tpg_indoor < ice_temp_1, the frequency of the compressor decreases at the speed of 1HZ/1second.
When Tpg_indoor < ice_temp_2, the frequency of the compressor decreases at the speed of 1HZ/10seconds.
When Tpg_indoor begins to rise again, and ice_temp_2 \leqslant Tpg_indoor \leqslant ice_temp_3, the frequency of the compressor doesn't change.
When ice_temp_3〈Tpg_indoor〈ice_temp_3+3 ${ }^{\circ} \mathrm{C}$, the frequency of the compressor increases at the speed of $1 \mathrm{HZ} / 10$ seconds.
For example, $\mathrm{Tpg}_{\mathrm{I}}$ indoor $\leqslant 0^{\circ} \mathrm{C}$, last for 2 minutes, and then the outdoor unit will stop, and report underload malfunction, but don't send malfunction report to the indoor.
The compressor stops for more than 3 minutes, Tpg_indoor> ice_temp_3 $+2^{\circ} \mathrm{C}$, the compressor recovers.

7.1.5.6 The frequency limitation of modification rate

In the field which is controlled by high frequency, if the modification rate is not high enough, the
control-driven chip will enter into weak magnetic control, this will help to relieve the problem of modification rate. If during the course of weak magnetic control, the modification rate is still not high enough, enter into the control of decreasing frequency until the alarm of modification rate is relieved.

7.1.5.7 Temperature protection of the outdoor refrigerating coil

When the frequency are higher than 40 Hz , and the defrosting sensor's temperature are higher than $68^{\circ} \mathrm{C}$, the frequency of the compressor decreases $1 \mathrm{hz} / 10$ seconds. Keep the frequency until it decreases to the lowest frequency. When the temperatures are lower than $68^{\circ} \mathrm{C}$ and higher than $62^{\circ} \mathrm{C}$, keep the frequency of the compressor. When the temperatures are lower than $62^{\circ} \mathrm{C}$, relieve the defrosting temperature protection.

7.2 Value of Thermistor

Ambient Sensor, Defrosting Sensor
$\mathrm{R} 25^{\circ} \mathrm{C}=10 \mathrm{~K} \Omega \pm 3 \% \quad \mathrm{~B} 25^{\circ} \mathrm{C} / 50^{\circ} \mathrm{C}=3700 \mathrm{~K} \pm 3 \%$

Temp. ${ }^{\circ} \mathrm{C}$)	Max.(K Ω)	Normal(K Ω)	Min.(K Ω)	Tolerance(${ }^{\circ} \mathrm{C}$)	
-30	165.2170	147.9497	132.3678	-1.94	1.75
-29	155.5754	139.5600	125.0806	-1.93	1.74
-28	146.5609	131.7022	118.2434	-1.91	1.73
-27	138.1285	124.3392	111.8256	-1.89	1.71
-26	130.2371	117.4366	105.7989	-1.87	1.70
-25	122.8484	110.9627	100.1367	-1.85	1.69
-24	115.9272	104.8882	94.8149	-1.83	1.67
-23	109.4410	99.1858	89.8106	-1.81	1.66
-22	103.3598	93.8305	85.1031	-1.80	1.64
-21	97.6556	88.7989	80.6728	-1.78	1.63
-20	92.3028	84.0695	76.5017	-1.76	1.62
-19	87.2775	79.6222	72.5729	-1.74	1.60
-18	82.5577	75.4384	68.8710	-1.72	1.59
-17	78.1230	71.5010	65.3815	-1.70	1.57
-16	73.9543	67.7939	62.0907	-1.68	1.55
-15	70.0342	64.3023	58.9863	-1.66	1.54
-14	66.3463	61.0123	56.0565	-1.64	1.52
-13	62.8755	57.9110	53.2905	-1.62	1.51
-12	59.6076	54.9866	50.6781	-1.60	1.49
-11	56.5296	52.2278	48.2099	-1.58	1.47
-10	53.6294	49.6244	45.8771	-1.56	1.46
-9	50.8956	47.1666	43.6714	-1.54	1.44
-8	48.3178	44.8454	41.5851	-1.51	1.42
-7	45.8860	42.6525	39.6112	-1.49	1.40
-6	43.5912	40.5800	37.7429	-1.47	1.39
-5	41.4249	38.6207	35.9739	-1.45	1.37
-4	39.3792	36.7676	34.2983	-1.43	1.35
-3	37.4465	35.0144	32.7108	-1.41	1.33

Functions and control

-2	35.6202	33.3552	31.2062	-1.38	1.31
-1	33.8936	31.7844	29.7796	-1.36	1.29
0	32.2608	30.2968	28.4267	-1.34	1.28
1	30.7162	28.8875	27.1431	-1.32	1.26
2	29.2545	27.5519	25.9250	-1.29	1.24
3	27.8708	26.2858	24.7686	-1.27	1.22
4	26.5605	25.0851	23.6704	-1.25	1.20
5	25.3193	23.9462	22.6273	-1.23	1.18
6	24.1432	22.8656	21.6361	-1.20	1.16
7	23.0284	21.8398	20.6939	-1.18	1.14
8	21.9714	20.8659	19.7982	-1.15	1.12
9	20.9688	19.9409	18.9463	-1.13	1.09
10	20.0176	19.0621	18.1358	-1.11	1.07
11	19.1149	18.2270	17.3646	-1.08	1.05
12	18.2580	17.4331	16.6305	-1.06	1.03
13	17.4442	16.6782	15.9315	-1.03	1.01
14	16.6711	15.9601	15.2657	-1.01	0.99
15	15.9366	15.2770	14.6315	-0.98	0.96
16	15.2385	14.6268	14.0271	-0.96	0.94
17	14.5748	14.0079	13.4510	-0.93	0.92
18	13.9436	13.4185	12.9017	-0.91	0.90
19	13.3431	12.8572	12.3778	-0.88	0.87
20	12.7718	12.3223	11.8780	-0.86	0.85
21	12.2280	11.8126	11.4011	-0.83	0.83
22	11.7102	11.3267	10.9459	-0.81	0.80
23	11.2172	10.8634	10.5114	-0.78	0.78
24	10.7475	10.4216	10.0964	-0.75	0.75
25	10.3000	10.0000	9.7000	-0.75	0.75
26	9.8975	9.5974	9.2980	-0.76	0.76
27	9.5129	9.2132	8.9148	-0.80	0.80
28	9.1454	8.8465	8.5496	-0.84	0.83
29	8.7942	8.4964	8.2013	-0.87	0.86
30	8.4583	8.1621	7.8691	-0.91	0.90
31	8.1371	7.8428	7.5522	-0.95	0.93
32	7.8299	7.5377	7.2498	-0.98	0.97
33	7.5359	7.2461	6.9611	-1.02	1.00
34	7.2546	6.9673	6.6854	-1.06	1.04
35	6.9852	6.7008	6.4222	-1.10	1.07
36	6.7273	6.4459	6.1707	-1.13	1.11
37	6.4803	6.2021	5.9304	-1.17	1.14
38	6.2437	5.9687	5.7007	-1.21	1.18
39	6.0170	5.7454	5.4812	-1.25	1.22
40	5.7997	5.5316	5.2712	-1.29	1.25

Functions and control

41	5.5914	5.3269	5.0704	-1.33	1.29
42	5.3916	5.1308	4.8783	-1.37	1.33
43	5.2001	4.9430	4.6944	-1.41	1.36
44	5.0163	4.7630	4.5185	-1.45	1.40
45	4.8400	4.5905	4.3500	-1.49	1.44
46	4.6708	4.4252	4.1887	-1.53	1.47
47	4.5083	4.2666	4.0342	-1.57	1.51
48	4.3524	4.1145	3.8862	-1.61	1.55
49	4.2026	3.9686	3.7443	-1.65	1.59
50	4.0588	3.8287	3.6084	-1.70	1.62
51	3.9206	3.6943	3.4780	-1.74	1.66
52	3.7878	3.5654	3.3531	-1.78	1.70
53	3.6601	3.4416	3.2332	-1.82	1.74
54	3.5374	3.3227	3.1183	-1.87	1.78
55	3.4195	3.2085	3.0079	-1.91	1.82
56	3.3060	3.0989	2.9021	-1.95	1.85
57	3.1969	2.9935	2.8005	-2.00	1.89
58	3.0919	2.8922	2.7029	-2.04	1.93
59	2.9909	2.7948	2.6092	-2.08	1.97
60	2.8936	2.7012	2.5193	-2.13	2.01
61	2.8000	2.6112	2.4328	-2.17	2.05
62	2.7099	2.5246	2.3498	-2.22	2.09
63	2.6232	2.4413	2.2700	-2.26	2.13
64	2.5396	2.3611	2.1932	-2.31	2.17
65	2.4591	2.2840	2.1195	-2.36	2.21
66	2.3815	2.2098	2.0486	-2.40	2.25
67	2.3068	2.1383	1.9803	-2.45	2.29
68	2.2347	2.0695	1.9147	-2.49	2.34
69	2.1652	2.0032	1.8516	-2.54	2.38
70	2.0983	1.9393	1.7908	-2.59	2.42
71	2.0337	1.8778	1.7324	-2.63	2.46
72	1.9714	1.8186	1.6761	-2.68	2.50
73	1.9113	1.7614	1.6219	-2.73	2.54
74	1.8533	1.7064	1.5697	-2.78	2.58
75	1.7974	1.6533	1.5194	-2.83	2.63
76	1.7434	1.6021	1.4710	-2.88	2.67
77	1.6913	1.5528	1.4243	-2.92	2.71
78	1.6409	1.5051	1.3794	-2.97	2.75
79	1.5923	1.4592	1.3360	-3.02	2.80
80	1.5454	1.4149	1.2942	-3.07	2.84
81	1.5000	1.3721	1.2540	-3.12	2.88
82	1.4562	1.3308	1.2151	-3.17	2.93
83	1.4139	1.2910	1.1776	-3.22	2.97

Functions and control

84	1.3730	1.2525	1.1415	-3.27	3.01
85	1.3335	1.2153	1.1066	-3.32	3.06
86	1.2953	1.1794	1.0730	-3.38	3.10
87	1.2583	1.1448	1.0405	-3.43	3.15
88	1.2226	1.1113	1.0092	-3.48	3.19
89	1.1880	1.0789	0.9789	-3.53	3.24
90	1.1546	1.0476	0.9497	-3.58	3.28
91	1.1223	1.0174	0.9215	-3.64	3.33
92	1.0910	0.9882	0.8942	-3.69	3.37
93	1.0607	0.9599	0.8679	-3.74	3.42
94	1.0314	0.9326	0.8424	-3.80	3.46
95	1.0030	0.9061	0.8179	-3.85	3.51
96	0.9756	0.8806	0.7941	-3.90	3.55
97	0.9490	0.8558	0.7711	-3.96	3.60
98	0.9232	0.8319	0.7489	-4.01	3.64
99	0.8983	0.8088	0.7275	-4.07	3.69
100	0.8741	0.7863	0.7067	-4.12	3.74
101	0.8507	0.7646	0.6867	-4.18	3.78
102	0.8281	0.7436	0.6672	-4.23	3.83
103	0.8061	0.7233	0.6484	-4.29	3.88
104	0.7848	0.7036	0.6303	-4.34	3.92
105	0.7641	0.6845	0.6127	-4.40	3.97
106	0.7441	0.6661	0.5957	-4.46	4.02
107	0.7247	0.6482	0.5792	-4.51	4.07
108	0.7059	0.6308	0.5632	-4.57	4.12
109	0.6877	0.6140	0.5478	-4.63	4.16
110	0.6700	0.5977	0.5328	-4.69	4.21
111	0.6528	0.5820	0.5183	-4.74	4.26
112	0.6361	0.5667	0.5043	-4.80	4.31
113	0.6200	0.5518	0.4907	-4.86	4.36
114	0.6043	0.5374	0.4775	-4.92	4.41
115	0.5891	0.5235	0.4648	-4.98	4.45
116	0.5743	0.5100	0.4524	-5.04	4.50
117	0.5600	0.4968	0.4404	-5.10	4.55
118	0.5460	0.4841	0.4288	-5.16	4.60
119	0.5325	0.4717	0.4175	-5.22	4.65
120	0.5194	0.4597	0.4066	-5.28	4.70

Discharging Sensor

R $80^{\circ} \mathrm{C}=50 \mathrm{~K} \Omega \pm 3 \%$
B25/80 ${ }^{\circ} \mathrm{C}=4450 \mathrm{~K} \pm 3 \%$

Temp.(($\left.\left.{ }^{\circ} \mathrm{C}\right)\right)$	Max.(K Ω)	Normal(K $\Omega)$	Min.(K $\Omega)$	Tolerance ${ }^{(\mathrm{C})}$)	
-30	14646.0505	12061.7438	9924.4999	-2.96	2.45

Functions and control

-29	13654.1707	11267.8730	9290.2526	-2.95	2.44
-28	12735.8378	10531.3695	8700.6388	-2.93	2.44
-27	11885.1336	9847.7240	8152.2338	-2.92	2.43
-26	11096.6531	9212.8101	7641.8972	-2.91	2.42
-25	10365.4565	8622.8491	7166.7474	-2.90	2.42
-24	9687.0270	8074.3787	6724.1389	-2.88	2.41
-23	9057.2314	7564.2244	6311.6413	-2.87	2.41
-22	8472.2852	7089.4741	5927.0206	-2.86	2.40
-21	7928.7217	6647.4547	5568.2222	-2.84	2.39
-20	7423.3626	6235.7109	5233.3554	-2.83	2.39
-19	6953.2930	5851.9864	4920.6791	-2.82	2.38
-18	6515.8375	5494.2064	4628.5894	-2.80	2.37
-17	6108.5393	5160.4621	4355.6078	-2.79	2.37
-16	5729.1413	4848.9963	4100.3708	-2.77	2.36
-15	5375.5683	4558.1906	3861.6201	-2.76	2.35
-14	5045.9114	4286.5535	3638.1938	-2.75	2.34
-13	4738.4141	4032.7098	3429.0191	-2.73	2.34
-12	4451.4586	3795.3910	3233.1039	-2.72	2.33
-11	4183.5548	3573.4260	3049.5312	-2.70	2.32
-10	3933.3289	3365.7336	2877.4527	-2.69	2.31
-9	3699.5139	3171.3148	2716.0828	-2.67	2.30
-8	3480.9407	2989.2460	2564.6945	-2.66	2.29
-7	3276.5302	2818.6731	2422.6139	-2.64	2.28
-6	3085.2854	2658.8058	2289.2164	-2.63	2.28
-5	2906.2851	2508.9126	2163.9230	-2.61	2.27
-4	2738.6777	2368.3158	2046.1961	-2.60	2.26
-3	2581.6752	2236.3876	1935.5371	-2.58	2.25
-2	2434.5487	2112.5459	1831.4826	-2.56	2.24
-1	2296.6230	1996.2509	1733.6024	-2.55	2.23
0	2167.2730	1887.0018	1641.4966	-2.53	2.22
1	2045.9191	1784.3336	1554.7931	-2.52	2.21
2	1932.0242	1687.8144	1473.1460	-2.50	2.20
3	1825.0899	1597.0431	1396.2333	-2.48	2.19
4	1724.6540	1511.6468	1323.7551	-2.47	2.17
5	1630.2870	1431.2787	1255.4324	-2.45	2.16
6	1541.5904	1355.6163	1191.0048	-2.43	2.15
7	1458.1938	1284.3593	1130.2298	-2.41	2.14
8	1379.7528	1217.2282	1072.8813	-2.40	2.13
9	1305.9472	1153.9626	1018.7481	-2.38	2.12
10	1236.4792	1094.3200	967.6334	-2.36	2.11
11	1171.0715	1038.0743	919.3533	-2.35	2.09
12	1109.4661	985.0146	873.7359	-2.33	2.08
13	1051.4226	934.9440	830.6210	-2.31	2.07

Functions and control

14	996.7169	887.6792	789.8583	-2.29	2.06
15	945.1404	843.0486	751.3077	-2.27	2.04
16	896.4981	800.8922	714.8380	-2.26	2.03
17	850.6086	761.0603	680.3265	-2.24	2.02
18	807.3024	723.4134	647.6580	-2.22	2.00
19	766.4212	687.8205	616.7252	-2.20	1.99
20	727.8172	654.1596	587.4271	-2.18	1.98
21	691.3524	622.3161	559.6694	-2.16	1.96
22	656.8979	592.1831	533.3634	-2.14	1.95
23	624.3328	563.6604	508.4261	-2.12	1.93
24	593.5446	536.6540	484.7796	-2.10	1.92
25	564.4275	511.0760	462.3510	-2.09	1.90
26	536.9865	486.9352	441.1516	-2.07	1.89
27	511.0105	464.0500	421.0258	-2.05	1.87
28	486.4151	442.3499	401.9146	-2.03	1.86
29	463.1208	421.7683	383.7626	-2.01	1.84
30	441.0535	402.2430	366.5175	-1.99	1.83
31	420.1431	383.7151	350.1301	-1.97	1.81
32	400.3242	366.1295	334.5542	-1.95	1.80
33	381.5350	349.4341	319.7460	-1.93	1.78
34	363.7176	333.5801	305.6645	-1.90	1.76
35	346.8176	318.5216	292.2709	-1.88	1.75
36	330.7839	304.2151	279.5286	-1.86	1.73
37	315.5682	290.6199	267.4031	-1.84	1.71
38	301.1254	277.6976	255.8620	-1.82	1.70
39	287.4128	265.4119	244.8745	-1.80	1.68
40	274.3905	253.7288	234.4118	-1.78	1.66
41	262.0206	242.6161	224.4465	-1.76	1.64
42	250.2676	232.0436	214.9529	-1.74	1.63
43	239.0983	221.9825	205.9065	-1.71	1.61
44	228.4809	212.4060	197.2844	-1.69	1.59
45	218.3860	203.2887	189.0648	-1.67	1.57
46	208.7855	194.6066	181.2273	-1.65	1.55
47	199.6531	186.3369	173.7524	-1.63	1.54
48	190.9639	178.4584	166.6217	-1.60	1.52
49	182.6945	170.9508	159.8181	-1.58	1.50
50	174.8228	163.7951	153.3249	-1.56	1.48
51	167.3280	156.9733	147.1268	-1.53	1.46
52	160.1904	150.4683	141.2090	-1.51	1.44
53	153.3914	144.2641	135.5577	-1.49	1.42
54	146.9136	138.3454	130.1598	-1.47	1.40
55	140.7403	132.6980	125.0027	-1.44	1.38
56	134.8559	127.3081	120.0746	-1.42	1.36

Functions and control

57	129.2457	122.1630	115.3645	-1.40	1.34
58	123.8956	117.2504	110.8618	-1.37	1.32
59	118.7926	112.5589	106.5564	-1.35	1.30
60	113.9241	108.0776	102.4388	-1.32	1.28
61	109.2784	103.7961	98.5000	-1.30	1.26
62	104.8443	99.7046	94.7315	-1.28	1.23
63	100.6112	95.7939	91.1253	-1.25	1.21
64	96.5692	92.0553	87.6735	-1.23	1.19
65	92.7088	88.4805	84.3690	-1.20	1.17
66	89.0211	85.0614	81.2048	-1.18	1.15
67	85.4976	81.7908	78.1744	-1.15	1.12
68	82.1303	78.6615	75.2715	-1.13	1.10
69	78.9116	75.6668	72.4902	-1.10	1.08
70	75.8343	72.8004	69.8249	-1.08	1.06
71	72.8916	70.0561	67.2703	-1.05	1.03
72	70.0770	67.4283	64.8213	-1.03	1.01
73	67.3844	64.9115	62.4731	-1.00	0.99
74	64.8080	62.5006	60.2211	-0.98	0.96
75	62.3423	60.1906	58.0609	-0.95	0.94
76	59.9821	57.9770	55.9885	-0.92	0.92
77	57.7223	55.8552	53.9998	-0.90	0.89
78	55.5583	53.8210	52.0912	-0.87	0.87
79	53.4856	51.8706	50.2591	-0.85	0.84
80	51.5000	50.0000	48.5000	-0.85	0.84
81	49.7063	48.2057	46.7083	-0.85	0.85
82	47.9835	46.4842	44.9911	-0.89	0.89
83	46.3286	44.8323	43.3452	-0.93	0.92
84	44.7385	43.2468	41.7672	-0.96	0.95
85	43.2105	41.7248	40.2540	-1.00	0.99
86	41.7386	40.2604	38.7996	-1.03	1.02
87	40.3241	38.8545	37.4048	-1.07	1.06
88	38.9643	37.5045	36.0668	-1.11	1.09
89	37.6569	36.2078	34.7831	-1.14	1.13
90	36.3996	34.9622	33.5513	-1.18	1.16
91	35.1903	33.7653	32.3689	-1.22	1.19
92	34.0269	32.6151	31.2338	-1.26	1.23
93	32.9075	31.5096	30.1438	-1.30	1.27
94	31.8302	30.4467	29.0970	-1.33	1.30
95	30.7933	29.4246	28.0915	-1.37	1.34
96	29.7950	28.4417	27.1254	-1.41	1.37
97	28.8337	27.4961	26.1970	-1.45	1.41
98	27.9078	26.5864	25.3048	-1.49	1.44
99	27.0160	25.7110	24.4470	-1.53	1.48

Functions and control

100	26.1569	24.8685	23.6222	-1.57	1.52
101	25.3290	24.0574	22.8291	-1.61	1.55
102	24.5311	23.2765	22.0662	-1.65	1.59
103	23.7620	22.5245	21.3323	-1.69	1.63
104	23.0205	21.8002	20.6261	-1.73	1.66
105	22.3055	21.1025	19.9465	-1.77	1.70
106	21.6159	20.4303	19.2924	-1.81	1.74
107	20.9508	19.7825	18.6626	-1.85	1.77
108	20.3091	19.1582	18.0563	-1.89	1.81
109	19.6899	18.5564	17.4723	-1.93	1.85
110	19.0924	17.9761	16.9098	-1.98	1.89
111	18.5157	17.4166	16.3680	-2.02	1.93
112	17.9590	16.8769	15.8458	-2.06	1.96
113	17.4214	16.3564	15.3427	-2.10	2.00
114	16.9023	15.8542	14.8577	-2.15	2.04
115	16.4010	15.3696	14.3902	-2.19	2.08
116	15.9167	14.9020	13.9394	-2.23	2.12
117	15.4489	14.4506	13.5047	-2.27	2.16
118	14.9968	14.0149	13.0855	-2.32	2.19
119	14.5599	13.5942	12.6811	-2.36	2.23
120	14.1376	13.1879	12.2909	-2.41	2.27
121	13.7294	12.7955	11.9144	-2.45	2.31
122	13.3347	12.4165	11.5510	-2.50	2.35
123	12.9531	12.0503	11.2003	-2.54	2.39
124	12.5840	11.6965	10.8617	-2.58	2.43
125	12.2270	11.3545	10.5348	-2.63	2.47
126	11.8817	11.0240	10.2191	-2.68	2.51
127	11.5475	10.7046	9.9142	-2.72	2.55
128	11.2242	10.3957	9.6197	-2.77	2.59
129	10.9112	10.0970	9.3352	-2.81	2.63
130	10.6084	9.8082	9.0602	-2.86	2.67
131	10.3151	9.5288	8.7945	-2.91	2.71
132	10.0312	9.2586	8.5378	-2.95	2.75
133	9.7563	8.9971	8.2895	-3.00	2.80
134	9.4901	8.7441	8.0495	-3.05	2.84
135	9.2322	8.4993	7.8175	-3.09	2.88
136	8.9824	8.2623	7.5931	-3.14	2.92
137	8.7404	8.0329	7.3760	-3.19	2.96
138	8.5059	7.8108	7.1660	-3.24	3.00
139	8.2787	7.5958	6.9629	-3.29	3.04
140	8.0584	7.3875	6.7664	-3.33	3.09

9.Center of graviṭy

10 Service Diagnosis

10.1 Caution for Diagnosis

The operation lamp flashes when any of the following errors is detected.

1. When a protection device of the indoor or outdoor unit is activated or when the thermistor malfunctions, disabling equipment operation.
2. When a signal transmission error occurs between the indoor and outdoor units. In either case, conduct the diagnostic procedure described in the following pages.

Parameter of primary electronic appliance

name	parameter
Compressor	Rated voltage:220-230V Rated current:4.8A Rated frequency: $50 / 60 \mathrm{HZ}$
Fan motor	Rated voltage:220-230V Rated current:0.2A Rated frequency: $50 / 60 \mathrm{HZ}$
Reactor	Rated voltage:220-230V Rated current:18A Rated frequency: 50/60HZ
Rated voltage:220-230V	
Rated current:0.1A	
Rated frequency: 50/60HZ	

10.2 Problem Symptoms and Measures

Symptom	Check Item	Details of Measure
None of the units operates	Check the power supply.	Check to make sure that the rated voltage is supplied.
	Check the indoor PCB	Check to make sure that the indoor PCB is broken
Equipment operates but does not cool, or does not heat (only for heat pump)	Check for faulty operation of the electronic expansion valve.	A power failure of 2 to 10 cycles can stop air conditioner operation.
Diagnosis by service port pressure and operating current.	Check for insufficient gas.	
Large operating noise and vibrations	Check the installation condition.	Check to make sure that the required spaces for installation (specified in the Technical Guide, etc.) are provided.

10.3 Error Codes and Description indoor display

	Code indication				fault description	Reference Page
	Indoor displaying panel code indication					
	Other display		Only For 498 and 498A display (Red/Green Time Run \square On \star Flash Off)	Outdoor (LED1 flash times)		
Indoor and Outdoor	E07	Directly display	$\square \square \star$	15	Communication fault between indoor and outdoor units	Page. 43
Indoor Malfunction	E01	Directly display	$\star \quad \square \square$	1	Indoor temperature sensor	Page. 33
	E02	Directly display	$\star \quad \square \quad \square$	1	Indoor coil sensor failure	Page. 33
	E04	Directly display	$\star \quad \square \quad \star$	1	Indoor eeprom failure	Page. 34
	E14	Directly display	$\square \square \star$	1	Indoor fan failure	Page. 35
Outdoor Malfunction	E05	Trouble record	$\square \square \star$	22	Internal unit antifreeze protection	1
	E09	Trouble record	$\square \square \star$	21	Internal unit overload	Page. 46
	F12	Directly display	$\square \star$ ■	1	Eeprom failure	Page. 34
	F01	Directly display	$\square \star \star$	2	IPM failure	Page. 38
	F22	Directly display	\star ¢ ■	3	AC current overcurrent protection	1
	F03	Directly display	$\square \star \square$	4	Communication error between module board and main PCB board.	Page. 40
	F20	Trouble record		5	High pressure protection	1
	F19	Trouble record	■ $\star \square$	6	Power over/under voltage protection	Page. 41
	F27	Directly display	■ \quad ■	7	Compressor stall / press instantaneous stop	1
	F04	Directly display	$\square \star \square$	8	Compressor discarging temperature protection	Page. 42
	F08	Trouble record	$\square \quad \star \quad \square$	9	Abnormal of DC motor	Page. 36
	F21	Directly display	$\square \quad \square \star$	10	Abnormal of piping sensor	1
	F07	Directly display	$\square \star$ ■	11	Suction temperature sensor failure	1
	F6	Directly display	$\square \quad \star \quad \square$	12	Abnormal of outdoor ambient sensor	/
	F25	Directly display	$\star \quad \square \quad \square$	13	Abnormal of compressor discharge sensor	1
	F13	Trouble record	■ $\quad \square$	16	Lack of refrigerant	1
	F14	Trouble record	- $\quad \square$	17	4-way valve reverse failure	Page. 35
	F11	Directly display	■ \quad ■	18	Compressor jam (only for spdu)	Page. 45
	F28	Directly display	$\square \star$ ■	19	Module PWM select circuit error	Page. 45
	F15	Trouble record	$\square \quad \square \square$	20	Outdoor terminal block temperature protection	1
	F02	Trouble record	$\square \quad \square \square$	24	Instantaneous over-current protection of the compressor	Page. 39
	F23	Trouble record	$\square \quad \square \square$	25	Compressor U-phase overcurrent Compressor V-phase overcurrent Compressor W-phase overcurrent	1
	F09	Trouble record	1	26	Module reset	Page. 46
	F24	Trouble record	\star ■ \quad ¢	27	CT disconnection	/
	F34	Trouble record	1	37	Outdoor coil protection	1
	F35	Trouble record	■ $\quad \square \square$	38	Compressor driver board failure	1
	F43	1	$\square \star \square$	46	Model matching abnormality	/

10.3.1 Thermistor or Related Abnormality

Indoor Display	^ ■ ■/ E01: Room temperature sensor failure
	$\star \square \square / \mathrm{E} 02$: Heat-exchange sensor failure
Outdoor display	LED1 flash 10 times: Defrost temperature sensor failure
	LED1 flash 11 times: Suction temperature sensor failure
	LED1 flash 12 times: Ambient temperature sensor failure
	LED1 flash 13 times: Discharge temperature sensor failure

Method of
Malfunction
Detection
Malfunction
Decision
Conditions

Supposed Causes

Troubleshooting

When the thermistor input is more than 4.92 V or less than 0.08 V during compressor operation.

- Note: The values vary slightly in some models
- Faulty connector connection
- Faulty thermistor
- Faulty PCB
* Caution Be sure to turn off power switch before connect or disconnect connector, or else parts damage may be occurred.

Thermistor resistance check method:
Remove the connector of the thermistor on the PCB, and measure the resistance of thermistor using tester.The relationship between normal temperature and resistance is shown in the value of indoor thermistor.

10.3.2 EEPROM abnormal

Indoor Display	$\star \square \star /$ E04: Indoor EEPROM error	
Indoor display	$\square \star$	$\star /$ F12: Outdoor EEPROM error; Outdoor LED1 flash 1 times

Method of The Data detected by the EEPROM are used to determine MCU Malfunction Detection

Malfunction Decision Conditions

Supposed Causes

- Faulty EEPROM data
- Faulty EEPROM
- Faulty PCB

Troubleshooting

* Caution Be sure to turn off power switch before connect or disconnect connector, or parts damage may be occurred.

Replace the indoor or outdoor mainboard.

10.3.3 Indoor DC fan motor malfunction
 Indoor Display $\quad \square \star /$ E14

Method of	The rotation speed detected by the Hall IC during fan motor operation is used to determine
Malfunction	abnormal fan motor operation

Detection
when the detected rotation feedback signal don't received in 2 minutes
Malfunction
Decision
Conditions

Supposed Causes

- Operation halt due to breaking of wire inside the fan motor.
- Operation halt due to breaking of the fan motor lead wires
- Detection error due to faulty indoor unit PCB

Troubleshooting * Caution Be sure to turn off power switch before connect or disconnect connector, or else parts damage may be occurred.

[^0]

10.3.5 IPM protection

Outdoor display:\star */F01 LED1 flash 2 times

Method of Malfunction Detection

Malfunction Decision
 Conditions

IPM protection is detected by checking the compressor running condition and so on

Supposed	-	IPM protection dues to the compressor faulty
Causes	IPM protection dues to faulty PCB of IPM module	
	-	Compressor wiring disconnected

Troubleshooting *Caution Be sure to turn off power switch before connect or disconnect connector, or else parts damage may be occurred.

10.3.6 Over-current of the compressor

Outdoor Display:

$$
\square \star \square / \text { F02 LED1 flash } 3 \text { or } 24 \text { or } 25 \text { times }
$$

Method of
 Malfunction
 Detection

Malfunction Decision Conditions	when the IPM Module is damaged or the compressor is damaged. power supply voltage is too low or too high
Supposed Causes	- Faulty IPM Module - Faulty compressor Faulty power supply
Troubleshooting	* Caution Be sure to turn off power switch before connect or disconnect connector, or parts damage may be occurred.

10.3.7 The communication fault between IPM and outdoor PCB

Outdoor display:

```
\(\square \star\) ■/ F03 LED1 flash 4 times
```

Method of Communication is detected by checking the IPM module and the outdoor PCB Malfunction Detection

Malfunction
 Decision
 Conditions

Supposed Causes

Troubleshooting

- The outdoor PCB broken leads to communication fault
- The IPM module broken leads to communication fault
- The outdoor PCB is broken
- The IPM module is broken
- Communication wiring disconnected
${ }^{*}$ Caution Be sure to turn off power switch before connect or disconnect connector, or else parts damage may be occurred.

10.3.8 Power Supply Over or under voltage fault

Outdoor display: $\square \star \square /$ F19 LED1 flash 6 times The power supply is over voltage

Method of Malfunction Detection

Malfunction Decision
Conditions

Supposed

 CausesTroubleshooting

An abnormal voltage rise or fall is detected by checking the specified voltage detection circuit.
\qquad

An voltage signal is fed from the voltage detection circuit to the microcomputer
\qquad

- Supply voltage not as specified
- the IPM module is broken
- the outdoor PCB is broken
* Caution Be sure to turn off power switch before connect or disconnect connector, or else parts damage may be occurred.

10.3.9 Overheat Protection For Discharge Temperature

Outdoor display: $\quad \star \square /$ F04 LED1 flash 8 times

Method of Malfunction Detection Malfunction Decision Conditions

Supposed

Causes

The Discharge temperature control is checked with the temperature being detected by the Discharge pipe thermistor
when the compressor discharge temperature is above $110^{\circ} \mathrm{C}$

- Electronic expansion valve defective
- Faulty thermistor
- Faulty PCB
* Caution Be sure to turn off power switch before connect or disconnect connector, or else parts damage may be occurred.

Electrify the machine again and turn it on with the remote controller, then measure the temperature at the exhaust temperature sensor of the compressor on the outdoor unit

10.3.10 The communication fault between indoor and outdoor

```
Indoor display
outdoor display
    LED1 flash 15 times
```

Method of Malfunction Detection

Malfunction

Decision
Conditions

Supposed

Causes

Troubleshooting
Communication is detected by checking the indoor PCB and the outdoor PCB.

- The outdoor PCB broken leads to communication fault.
- The indoor PCB broken leads to communication fault.
- Communication wiring disconnected.
- The indoor PCB is broken.
- The outdoor PCB is broken.
- The Module PCB is broken.
* Caution Be sure to turn off power switch before connect or disconnect connector, or else parts damage may be occurred.

10.3.11 Loss of synchronism detection Inverter side current detection is abnormal

Outdoor Display $\quad \boldsymbol{\square} \boldsymbol{\square} \backslash$ F11 \quad LED1 \quad flash 18 times

Method of The position of the compressor rotor can not detected normally
Malfunction
Detection
Malfunction
Decision
Conditions

Supposed
Causes

Troubleshooting
when the wiring of compressor is wrong or the connection is poor; or the compressor is damaged

- Faulty The wiring of compressor
- Faulty compressor

Faulty PCB

* Caution Be sure to turn off power switch before connect or disconnect connector, or parts damage may be occurred.

10.3.12 High work-intense protection

Outdoor display \qquad

Method of
Malfunction
Detection

Malfunction
Decision
Conditions
Supposed
Causes

Troubleshooting

High work-intense control is activated in the heating mode if the temperature being sensed by the heat exchanger thermistor exceeds the limit.

Activated when the temperature being sensed by the heat exchanger rises above $65^{\circ} \mathrm{C}$ twices in 30 minutes.

- Faulty electronic expansion valve
- Dirty heat exchanger
- Faulty heat-exchange sensor - Insufficient gas
* Caution Be sure to turn off power switch before connect or disconnect connector, or else parts damage may be occurred.

11.Performence and curves diagrams

11.1 Cooling capacity-temperature curves

performance curves											
cooling value-temerature table											
indoor temp.											
DB/WB	$-10^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$8^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$38^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
$21 / 15^{\circ} \mathrm{C}$	1955	2040	2125	2098	2030	1925	2420	2623	2567	2447	2257
$24 / 16^{\circ} \mathrm{C}$	2056	2139	2218	2206	2140	2019	2479	2727	2681	2609	2381
$27 / 19^{\circ} \mathrm{C}$	2225	2416	2485	2432	2391	2236	2792	3080	2953	2894	2646
$30 / 22^{\circ} \mathrm{C}$	2380	2520	2632	2576	2520	2380	2940	3220	3136	3024	2828
$32 / 23^{\circ} \mathrm{C}$	2533	2685	2794	2686	2705	2539	3087	3417	3276	3183	3022
$35 / 24^{\circ} \mathrm{C}$	2637	2769	2939	2831	2738	2624	3224	3506	3449	3370	3081

cooling capacity and indoor/outdoor temp.curves

11.2 Cooling power consumption value- temperature curves

performance curves
power consumption value-temp.table

indoor temp.	30°										
$\mathrm{DB} / \mathrm{WB}$	$-10^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$8^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$38^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
$21 / 15^{\circ} \mathrm{C}$	501	583	685	677	655	320	464	580	723	811	866
$24 / 16^{\circ} \mathrm{C}$	527	611	693	689	669	329	464	598	745	851	901
$27 / 19^{\circ} \mathrm{C}$	571	690	753	737	724	362	513	659	781	918	966
$30 / 22^{\circ} \mathrm{C}$	610	720	774	758	741	372	525	671	800	945	1010
$32 / 23^{\circ} \mathrm{C}$	649	767	798	767	773	397	551	712	862	995	1079
$35 / 24^{\circ} \mathrm{C}$	676	791	816	786	760	410	576	730	908	1053	1100

11.3 Cooling discharge pressure curves

performance curves			
cooling discharge pressure.table			
outdoor temp. (humidity 46%)	indoor temp.		
$\mathrm{DB} / \mathrm{WB}$	$21 / 15^{\circ} \mathrm{C}$	$27 / 19^{\circ} \mathrm{C}$	$35 / 24^{\circ} \mathrm{C}$
$-10^{\circ} \mathrm{C}$	1366	1420	1480
$0^{\circ} \mathrm{C}$	1516	1578	1679
$8^{\circ} \mathrm{C}$	1661	1710	1814
$15^{\circ} \mathrm{C}$	1789	1841	1916
$20^{\circ} \mathrm{C}$	1938	2025	2106
$25^{\circ} \mathrm{C}$	2093	2157	2288
$30^{\circ} \mathrm{C}$	2203	2341	2475
$35^{\circ} \mathrm{C}$	2401	2499	2626
$38^{\circ} \mathrm{C}$	2608	2683	2814
$40^{\circ} \mathrm{C}$	2947	3025	3227
$43^{\circ} \mathrm{C}$	3245	3419	3531

11.4 Cooling suction pressure curves

performance curves cooling suction pressure.tableoutdoor temp. (humidity 46%) indoor temp.				
DB/WB	$21 / 15^{\circ} \mathrm{C}$	$27 / 19{ }^{\circ} \mathrm{C}$	$35 / 24^{\circ} \mathrm{C}$	
$-10^{\circ} \mathrm{C}$	653	805	925	
$0{ }^{\circ} \mathrm{C}$	680	838	964	
$8{ }^{\circ} \mathrm{C}$	701	864	994	
$15^{\circ} \mathrm{C}$	716	882	1014	
$20^{\circ} \mathrm{C}$	723	891	1024	
$25^{\circ} \mathrm{C}$	761	900	1045	
$30^{\circ} \mathrm{C}$	801	947	1056	
$35^{\circ} \mathrm{C}$	843	956	1111	
$38^{\circ} \mathrm{C}$	887	986	1134	
$40^{\circ} \mathrm{C}$	976	1085	1247	
$43^{\circ} \mathrm{C}$	1074	1171	1360	

11.5 Heating capacity-temperature curves

performance curves			
heating capacity and indoor/outdoor temp.table			
outdoor temp.	indoor temp.(humidity 46%)		
$\mathrm{DB} / \mathrm{WB}$	$10{ }^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$27^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$	2022	1866	1618
$-15^{\circ} \mathrm{C}$	2460	2292	2022
$-10^{\circ} \mathrm{C}$	2797	2558	2359
$-7 /-8^{\circ} \mathrm{C}$	3438	3117	2897
$2 / 1^{\circ} \mathrm{C}$	3675	3243	2941
$7 / 6{ }^{\circ} \mathrm{C}$	3577	3303	2939
$12 / 11^{\circ} \mathrm{C}$	3493	3146	2572
$18 / 16^{\circ} \mathrm{C}$	3202	3051	2406
$24 / 20^{\circ} \mathrm{C}$	3002	2761	2166

11.6 Heating power consumption value- temperature curves

performance curves			
power consumption value-temp.table			
outdoor temp.	indoor temp.(humidity 46\%)		
DB/WB	$10^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$27^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$	1101	1296	1373
$-15^{\circ} \mathrm{C}$	1228	1364	1446
$-10^{\circ} \mathrm{C}$	1421	1480	1554
-7/-8 ${ }^{\circ} \mathrm{C}$	1591	1623	1705
$2 / 1^{\circ} \mathrm{C}$	1635	1668	1752
$7 / 6^{\circ} \mathrm{C}$	1611	1678	1762
$12 / 11^{\circ} \mathrm{C}$	1434	1542	1696
18/16 ${ }^{\circ} \mathrm{C}$	1204	1338	1472
$24 / 20^{\circ} \mathrm{C}$	941	1046	1150

power consumption and temp

11.7 Heating discharge pressure curves

performance curves			
heating discharge pressure.table			
outdoor temp	indoor temp.		
$\mathrm{DB} / \mathrm{WB}$	$10^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$27^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$	2373	2464	2548
$-15^{\circ} \mathrm{C}$	2500	2658	2718
$-10^{\circ} \mathrm{C}$	2883	3062	3159
$-7 /-8^{\circ} \mathrm{C}$	3187	3344	3481
$2 / 1^{\circ} \mathrm{C}$	3345	3626	3753
$7 / 6^{\circ} \mathrm{C}$	3362	3520	3710
$12 / 11^{\circ} \mathrm{C}$	3131	3344	3420
$18 / 16^{\circ} \mathrm{C}$	3010	3143	3241
$24 / 20^{\circ} \mathrm{C}$	2560	2672	2800

11.8 Heating suction pressure curves

performance curves			
heating suction pressure.table			
outdoor temp	indoor temp.		
DB/WB	$10^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$27^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$	257	298	318
$-15^{\circ} \mathrm{C}$	341	382	402
$-10^{\circ} \mathrm{C}$	392	423	443
$-7 /-8^{\circ} \mathrm{C}$	486	527	547
$2 / 1^{\circ} \mathrm{C}$	605	646	666
$7 / 6^{\circ} \mathrm{C}$	738	779	799
$12 / 11^{\circ} \mathrm{C}$	837	878	898
$18 / 16^{\circ} \mathrm{C}$	1004	1045	1065
$24 / 20^{\circ} \mathrm{C}$	1190	1231	1251

12. Circuit diagrams

Domestic air conditioner

Sincere Forever

Haier Group

Haier Industrial Park, No.1, Haier Road	Edited by:	Shi Haiyan
266101, Qingdao, China_		Yang Xiaodong
Http: //www.haier.com	Signed by:	Yang Wenjun
	Approved by: Wu Hongjin	

Haier REMOVAL PROCEDURE

Outdoor unit DC Inverter

Remove of front panel

Outdoor unit

Step		Procedure	Points
1.Features			
1	Loosen the service cover screw and remove the service cover.		Be careful not to cut your finger by the fins of the heat exchanger

2. Remove the panels.
Step

Remove the air filters and horizontal flap

Step		Procedure	Points
1	Loosen the fixting screws and remove The back protect net .		
1	Loosen the fixting screws and remove the side panel.		

Remove the casing
Step Loosen the fixting
Step

Release stepping motor (2type)

Step		Procedure	Points
1	Remove the fixing screws, then lift the fan motor bracket		
2	Cut down the and pull out the compressor and remove the		

Removal of Heat Exchanger

Step		Procedure	Points
	Loosen the marked fixing screws		

[^0]: 10.3.4 Outdoor DC fan motor fault

 Outdoor display
 $\star \square /$ F08 LED1 flash 9 times

 Method of
 DC fan motor is detected by checking the fan running condition and so on
 Malfunction
 Detection
 Malfunction
 Decision
 Conditions
 Supposed

 - DC fan motor protection dues to the DC fan motor faulty

 Causes
 when the data of EEPROM is error or the EEPROM is damaged

 - DC fan motor protection dues to faulty PCB

 Troubleshooting *Caution Be sure to turn off power switch before connect or disconnect connector, or parts damage may be occurred.

